
CIS530: Assignment 2

Michael Gao David Zhan

1 Introduction

In this project, we implement a Part-of-Speech
(POS) tagger using a trigram Hidden Markov
Model (HMM). POS tagging entails predicting
tags which assign grammatical categories to each
word in a text input, such as noun, verb, or adjec-
tive. The data used in this task is from the Penn
Treebank, which consists of tagged words from the
Wall Street Journal.

Maximum Likelihood Estimation (MLE) was
applied for parameter estimation, incorporat-
ing Laplace (additive) and linear interpolation
smoothing techniques. The performance of var-
ious inference methods—greedy search, beam
search, and the Viterbi algorithm—was then com-
pared. Different combinations of smoothing tech-
niques, inference methods, and n-gram models
were tested on a development dataset to optimize
prediction accuracy.

2 Data

Our data consists of a train set, development set,
and test set. The latter is given only as text in-
put, while the other two are given with both in-
puts and tag labels. In total, there are 46 unique
labels, including a -DOCSTART-, the equivalent of
a <START> tag. No <STOP> tag is included in the
data. Each set consists of a number of documents,
which are each preceded with a <START>. We pro-
vide some statistics on the nature of these data
sets:

Table 1: Data Summary
Train Dev Test

Number of doc-
uments

1,387 462 463

Total tag count 696,475 243,021 236,582

Mean document
length (tags)

502.1 526.0 511.0

Vocab size
(unique words)

37506 20706 20180

We do not alter/preprocess the data besides ig-

noring <STOP>, since it does not exist in any out-
puts and thus offers no benefit for predictions.

3 Handling Unknown Words

We use a suffix tree to handle unknown words.
When training the model, we add all words to
a suffix tree. Words with common suffixes often
share the same POS tag with a high probability;
for example, “-ing” is a common suffix of present-
tense verbs (e.g. jumping, trying, running). To
handle unknown words, we use the suffix tree to
match the maximum suffix, then count the num-
bers of each tag present in words which share
that suffix. From those numbers, we calculate the
emission probabilities and apply smoothing. This
approach also allows us to calculate probabilities
based on the present training set, rather than an
external embedding.

4 Smoothing

We implement two forms of smoothing in our
model: Laplace and linear interpolation. Laplace
smoothing involves adding a small count to all fre-
quency probability calculations to prevent 0 pos-
sibilities. In our unigram, bigram, and trigram
methods, we add a Laplace factor of α = 0.01 to
all counts, then normalize appropriately. By do-
ing so, we artificially increase the probabilities of
unseen tag sequences, which slightly dilutes the
probabilties of frequently seen sequences. How-
ever, with a α = 0.01, the impact on the most
frequent n-grams is minimal while allowing the
model to now make inferences on unseen words.

Linear interpolation smoothing assigns weights
to each n-gram and takes a linear combination
of each lower gram probability. Higher order n-
grams may overfit to specific tag sequences, and
since unigrams and bigrams are more common,
they provide more reliable fallbacks for unseen
words. By weighting each n-gram, we dilute the
probabilites of precise tagging sequences, but the
model is able to handle unseen higher order se-
quences more reliably. We use bigram lambdas

1

λ1 = 0.1, λ2 = 0.9 and trigram lambdas λ1 =
0.1, λ2 = 0.1, λ3 = 0.8.

5 Implementation Details

We implement each of the n-gram transition cal-
culations by first computing counts of each tag
sequence (e.g. tag1,tag2,tag3), then dividing
by the total to normalize (and applying smooth-
ing after, if specified). Each of these computations
are vectorized using Numpy arrays for speed, al-
though training takes a fraction of a second re-
gardless. Emission calculations are computed sim-
ilarly, by summing counts of tag,word pairs, then
dividing and applying smoothing if specified.

A suffix tree is included in the model to handle
unknown words using suffixes to estimate prob-
able tags based on training words. Suffixes are
filtered to am inimum length of 2 and maximum
frequency of 5, such that short or infrequent suf-
fixes to not unnecessarily inflate the tree’s size.
This improves each of memory, efficiency, and pre-
diction accuracy.

In each inference method, we maintain log-
space probabilities to avoid floating-point preci-
sion errors and underflow. The greedy and beam
search inference implementations iterate over the
desired input sequence, check the current beam,
and compare the probability of adding each pos-
sible tag to the sequence. The top k tag se-
quences are then kept for the successive iteration.
The viterbi algorithm is implemented using a 2-
dimensional state lattice of tag,word for bigrams
and (tag1,tag2),word for trigrams. We then
use dynamic programming to check all transitions
from the previous tag(s) and emissions to find
the sequence with the maximum likelihood. We
also attempted to vectorize computations wher-
ever possible, but for our implementation there
was not much opportunity for it.

6 Experiments and Results

Test Results Our final leaderboard submission
had a 96.19 F1-score on the test data, using a
trigram Viterbi model with linear interpolation
with λ1 = 0.1, λ2 = 0.1, λ3 = 0.8, trained on
both the train and dev data. This was the best
performance out of the submissions to the leader-
board (Table 2). For leaderboard submissions, we
mainly used Viterbi since it makes optimal in-
ferences, and trigrams because it performs bet-
ter than bigrams. The interpolation submissions

performed slightly better than Laplace, ceteris
paribus.

Table 2: Test data F1-score.
∗∗ denotes final leaderboard submission.

Setup F1

3-gram Viterbi, interpol., λ =
(0.1, 0.1, 0.8), train & dev data

96.19 **

3-gram Viterbi, interpol., λ =
(0.1, 0.1, 0.8), train data only

96.02

3-gram Viterbi, Laplace, α =
0.001, train data only

95.89

3-gram Viterbi, Laplace, α =
0.01, train data only

95.87

3-gram Beam (k = 20), Laplace,
α = 0.001, train data only

95.11

Smoothing The values for α and λ were derived
empirically by testing values, as show in tables 3
and 4 below. For succinctness, we show a subset of
the tests done to make the comparison apparent.

Table 3: Interpolation performance across λ =
(λ1, λ2, λ3) using 3-gram beam search (k=10)

Setup T U

λ = (0.33, 0.33, 0.34) 95.43 71.10

λ = (0.1, 0.1, 0.8) 95.76 74.07

λ = (0.1, 0.8, 0.1) 95.42 72.04

λ = (0.8, 0.1, 0.1) 94.27 65.31

Table 4: Interpolation performance across α using
3-gram beam search (k=10)

Setup T U

α = 1 93.43 73.71

α = 0.1 95.38 74.62

α = 0.01 95.66 74.49

α = 0.001 95.63 74.51

α = 0.0001 95.58 74.45

From table 3, we see that a higher λ3 results in
the highest total (T) and unknown word (U) accu-
racy of 95.76% and 74.07%, respectively. A higher
λ1 results in the lowest accuracies of 94.27% and
65.31%. Splitting λ values evenly or with a higher
λ2 sit in the middle.

From table 4, we see that α = 0.01 has the
highest total accuracy of 95.66%. α = 0.001 has
the highest unknown word accuracy of 74.51%,
but α = 0.01 is only 0.02% worse.

While running tests for the rest of this docu-
ment, we use α = αopt = 0.01 for Laplace and

2

λ = λopt = (λ1,opt, λ2,opt, λ3,opt) = (0.1, 0.1, 0.8)
for interpolation smoothing.
As seen in table 5, without smoothing, all in-

ference methods perform worse in total accuracy,
while the difference in unknown word accuracy is
inconsistent. However, as a more optimal method
is used, the disparity is much less: for total ac-
curacy, Greedy without smoothing is 0.37% worse
than Laplace and 0.59% worse than interpolation,
but Viterbi is only 0.16% worse than Laplace and
0.30% worse than interpolation.

Table 5: Performance with vs. without Smooth-
ing, for total (T) and unknown-only (U) accuracy
Setup T U

3-gram Greedy, no smoothing 94.13 69.26

3-gram Greedy, Laplace αopt 94.50 69.22

3-gram Greedy, interpol. λopt 94.72 68.77

3-gram Beam (k=10), no
smoothing

95.43 74.43

3-gram Beam (k=10), Laplace
αopt

95.66 74.49

3-gram Beam (k=10), interpol.
λopt

95.76 74.07

3-gram Viterbi, no smoothing 95.53 75.31

3-gram Viterbi, Laplace αopt 95.69 75.48

3-gram Viterbi, interpol. λopt 95.83 74.69

In general, smoothing increases total accuracy,
and interpolation does so more than Laplace.
However, interpolation is consistently worse in un-
known word accuracy than both no smoothing
and Laplace smoothing.

Bi-gram vs. Tri-gram The results in Table
6 indicate that the trigram model slightly out-
performs the bigram model in both overall to-
ken accuracy and accuracy on unknown words.
This suggests that the trigram model captures
more context, allowing it to better handle cases
where word disambiguation relies on considering
two preceding tags rather than just one.
However, the improvement is small (95.42 vs.

95.69 for Laplace, and 95.44 vs. 95.83 for interpo-
lation), which implies that the trigram model cap-
tures more information, but the additional con-
text does result significantly better performance.
The bigram model still performs quite well, since
a 95.43 percent accuracy is proficient, making it
a competitive option when considering the trade-
off between model complexity and performance.
However, for unknown words, the trigram model
performed up to about 2% better, which can be
significant depending on the desired task.

Table 6: Bigram vs. trigram performance
Setup T U

2-gram Viterbi, Laplace αopt 95.42 73.54

3-gram Viterbi, Laplace αopt 95.69 75.48

2-gram Viterbi, interpol. λopt 95.44 73.12

3-gram Viterbi, interpol. λopt 95.83 74.69

This indicates that while higher-order n-gram
models (such as the trigram model) can improve
performance slightly by leveraging more contex-
tual information, the gains may be limited, par-
ticularly when compared to the additional com-
putational complexity required.

Greedy vs. Viterbi vs. Beam Using Laplace
smoothing with αopt = 0.01, Viterbi out-performs
beam search (for all k ∈ [1..20]) for both total
accuracy and unknown word accuracy. It is true
that increasing the value of k for beam search does
increase its accuracy in both categories, but the
amount of increase significantly decreases as k in-
creases. Initially, increasing k improves accuracy
substantially. For example, from k = 1 (Greedy)
to k = 5, the total accuracy jumped over 1% and
unknown word accuracy increased over 5%. How-
ever, the tradeoffs in time exceed the additional
benefit of less than 0.01% increase in total ac-
curacy for each unit increase of k after k = 20.
Our viterbi implementation takes almost 9 min-
utes, and beam search with k = 20 takes about a
third of that. In table 7, we compare different in-
ference methods including a subset of k values for
beam search. Additionally, Greedy (with Laplace

Table 7: Greedy, Beam, Viterbi Comparison
Setup T U Time

Greedy, Laplace αopt 94.50 69.22 9sec

Beam (k=5), Laplace αopt 95.63 74.24 33sec

Beam (k=10), Laplace αopt 95.66 74.49 65sec

Beam (k=20), Laplace αopt 95.69 74.70 3min

Viterbi, Laplace αopt 95.69 75.48 9min

smoothing) will find the optimal tag sequence for
an individual sentence 72.42% of the time.

7 Analysis

Error Analysis The most common error
classes for the Trigram Viterbi model are:

Adjective-Noun Confusion (JJ vs. NN): The
model struggles to differentiate between adjectives

3

and nouns in certain contexts, especially when de-
scriptive words can be mistaken for nouns. This
type of error accounts for the most and third most
frequent error for our model. For example, in
the case of “closing,” the model predicted a noun
(NN), while the true tag was an adjective (JJ).

Proper Noun vs. Common Noun (NNP vs.
NN): This error occurs when the model confuses
capitalized proper nouns with regular common
nouns. A typical example is the word ”End,”
where the model predicted a common noun (NN),
but the correct tag was a proper noun (NNP).

Verb Tense Confusion (VBN vs. VBD): The
model sometimes confuses past participles with
simple past tense verbs, likely due to similar sen-
tence structures where both forms are plausi-
ble. For instance, ”estimated” was tagged as a
past participle (VBN) when it should have been
marked as simple past tense (VBD).

Table 6 lists the 10 most common POS tagging
errors for our model.

Table 8: 10 Most Common POS Tagging Errors
True Tag Predicted Tag Count

JJ NN 613
NNP NN 600
NN JJ 595
NN NNP 458
VBN JJ 425
VBD VBN 412
IN RB 355

NNP NNPS 320
VBN VBD 311
RB RP 243

Confusion Matrix The heatmap visualizes the
performance of a POS tagger through a confu-
sion matrix, where rows represent true tags and
columns represent predicted tags. The diagonal
elements show correct predictions, with brighter
spots indicating higher number of predictions.
The brightness is almost all concentrated along
the diagonal, suggesting that the model is very
accurate.

Off-diagonal spots highlight misclassifications,
which there are very few. To the naked eye, there
do not seem to be any misclassifications of sig-
nificance, as aside from the center diagonal (or
correct classifications), the rest of the squares are
black.

8 Conclusion

In this project, we implemented a Part-of-Speech
tagger using a Hidden Markov Model with trigram
transitions and applied different smoothing and
inference methods. Our results demonstrated that
the Viterbi algorithm, especially when combined
with linear interpolation smoothing, provided the
best overall accuracy, reaching 95.83% for token
accuracy and 74.69% for unknown words. This
outcome highlights the advantage of using higher-
order n-gram models for capturing more context,
which is particularly beneficial for disambiguating
tags in complex sentences.

The analysis also revealed that smoothing is
crucial for model performance, as it significantly
improves the handling of unseen word-tag pairs.
Laplace smoothing, in particular, enabled the
model to generalize better, as seen by the increase
in unknown word accuracy compared to models
without smoothing.

Error analysis identified common challenges
such as distinguishing between adjectives and
nouns (e.g.“closing”), differentiating proper nouns
from common nouns (e.g., “End”), and handling
verb tense variations. Despite these challenges,
the overall performance and efficiency of our tri-
gram Viterbi model demonstrate its robustness in
accurately tagging parts of speech, making it suit-
able for practical NLP tasks involving POS tag-
ging. Future work could explore more advanced
smoothing techniques or the incorporation of ex-
ternal embeddings to further improve accuracy,
especially for handling rare or unknown words.

4

	Introduction
	Data
	Handling Unknown Words
	Smoothing
	Implementation Details
	Experiments and Results
	Analysis
	Conclusion

