
DavidSearch: A Distributed Search Architecture for
Large-Scale Web Crawling, Indexing, and Ranking

Dan Kim
dankim1@seas.upenn.edu

David Zhan
dazhan@seas.upenn.edu

Eric Zou
ezou626@seas.upenn.edu

Stephen Kwak
kwak7@seas.upenn.edu

I. INTRODUCTION

This project implements an end-to-end distributed search en-
gine consisting of a crawler, indexer, PageRank computation,
and query frontend. We prioritized correctness and scalability
first, then incrementally optimized performance and ranking
quality. Dan specialized on crawler and rank-tuning, Stephen
and Eric focused on indexing and Flame/KVS optimizations,
and David focused on PageRank and frontend. We crawled
1.28 million pages by Thanksgiving break but encountered
unexpected PageRank runtime bottlenecks at this scale. Our
final deployment runs on a 200,000 page corpus successfully
crawled, indexed, and ranked.

II. ARCHITECTURE

1) AWS Overview: All instances were created in the same
availability zone and security group besides the web server.
All storage was EBS volumes.

2) Flame Engine: This layer provides distributed dataset
operation abstractions to facilitate distributed computation. In
our deployment, we use a Flame coordinator and 6 Flame
workers. Each worker has its own reserved c8a.large AWS
instance. The coordinator is on a shared m8a.large AWS
instance with the KVS coordinator.

3) Key Value Store: Each of the 6 workers has its own
reserved m8a.large AWS instance with 75 GB disk space.
Worker IDs were assigned so that each worker gets an even
number of adjacent characters in the lowercase alphabet, since
the provided hasher hashes inputs uniformly to a fixed length
string composed of lowercase letters from the alphabet.

4) Web server: An HTTPS server connected to the KVS
service to serve search results hosted on a t2.micro instance.

5) Crawler: A scalable web crawler that implements all
the core functionality from HW8 (respecting robots.txt). Some
other enhancements include domain page limiting, blacklist-
ing, filtering of different languages and content-type, sampling
for improved frontier-size management, and the ability to save
checkpoints and restart crawls. Our crawler handles 1 million+
web pages with a 5MB page limit.

6) Indexer: A scalable indexer that builds an inverted index
over the corpus and pre-computes TF-IDF values for reduced
latency in the web search frontend. Some notable enhance-
ments include the ability to persist intermediate tables to disk
to avoid OOM issues, deleting intermediate tables to save
disk space, combining/optimizing Flame operations, word-
stemming using Snowball stemmer, an aggressive filtering

scheme, and hashing tokens to ensure even distribution across
workers. Our indexer indexes the first 256 KB per page for
speed.

7) PageRank: Uses an iterative graph algorithm comput-
ing page importance scores with a configurable convergence
threshold. Notable enhancements include decoupling of IO and
CPU work through parallelism in Flame and persisting only
some intermediate tables to disk.

8) Frontend: A web frontend that serves search queries
with ranked results combining TF-IDF and PageRank scores. It
queries the KVS to fetch inverted index data (pt-index-freqs,
pt-index-idf) and PageRank scores (pt-pageranks) for search
terms, computes cosine similarity scores between query vec-
tors and document vectors, and combines them with PageRank
scores to return the top 50 most relevant URLs. The system
normalizes queries using the same normalization logic used
in the Indexer, parallelizes KVS lookups for performance, and
serves results through the UI.

III. ENHANCEMENTS/OPTIMIZATIONS

A. Flame Optimizations

1) Intermediate Tables on Disk and Deleting Old Tables:
Adding these APIs helped reduce memory footprint and disk
usage, issues common to all jobs.

2) Multithreading: ExecutorService thread pool paral-
lelizes network accesses and some computations. We used
semaphores for synchronization of the main thread and in con-
junction with fixed-size queues to limit memory consumption.
Separating the main thread from the worker threads ensured
that pending computations weren’t blocked by get/put requests
from the KVS, something that limited crawler throughput.

3) Producer-Consumer: We build a pipeline in which
CPU workers can produce rows into a bounded block-
ing queue while dedicated consumers handle aggregation
and network I/O. In Flame operations like fromTable-
ToPair/flatMapToPair, the lambda results are pushed into a
LinkedBlockingQueue<Row>. We use atomics for synchro-
nization. Terminal consumer threads drain the queue and batch
put rows when their accumulation hits a certain count. This
allows the KVS to see fewer write requests with collected
rows, reducing overhead from RTT and packet metadata.
Queue size and worker count limits naturally bound memory,
since OOM was an issue for us in indexer with overeager
workers.



4) Aggregation: After noticing that the Flame workers
had low CPU usage in some jobs while KVS was maxed
out, we implemented Flame aggregation. In operations like
fromTableToPair and flatMapToPair, the producer-consumer
stages generate a large number of rows with the same keys.
Instead of immediately sending rows from the producer to
network, we initially send results to a queue where consumer
threads collect batches from a window to combining columns
of rows with the same row key. These aggregations can be
repeated with multiple levels. This reduces network overhead
from repeated row keys and KVS-side loads and writes to disk.

5) Flame Op Combination: One big change was combining
”fromTable” and ”flatMapToPair” to create a new op called
”fromTableToPair”. This new route saves the step of needing
to write an extra intermediate string, then read/process that
string again to generate a pairRDD. For the Crawler, we also
created flatMapDistinct, which saves us from deduplicating
URLs at some later step, greatly reducing URL frontier sizes.

B. KVS Optimizations
1) Batch Reads and Writes: Batch gets/puts allowed mul-

tiple rows in the same network request, reducing network
overhead from headers, packet metadata, and network RTT.
KVS multiPut and multiGet operations.

2) Lock Striping for Reduced Contention: Instead of using
coarse-grained table-level locks which would create severe
contention and using a unique lock per row, which would
lead to memory overuse without cleanup (a challenge we
ran into for Crawler), we implemented lock striping with
65,521 lock objects. Each row is mapped to one of these
locks using the modulo of the hashCode of table—row. This
dramatically reduced lock contention—multiple threads can
safely write to different rows in the same table simultaneously
while bounding memory use. The prime number of locks helps
with uniform distribution to minimize collisions.

3) Asynchronous Background Ingestion: Rather than syn-
chronously writing every PUT request directly to disk, we
implemented a write-buffering system with per-table Linked-
BlockingQueues holding up to 200,000 rows. When Flame
workers send data, rows are immediately placed into these in-
memory buffers and the HTTP request completes. Background
flusher threads poll these queues with timeouts, accumulating
batches before writing to disk. This decouples network I/O
from disk I/O, allowing KVS to accept writes much faster than
disk can handle them to smooth out bursty traffic patterns (a
common challenge in our flatmaptopair operations).

Some writes remained in memory buffers when Flame ops
complete. To ensure correctness, we added a flush() API that
Flame jobs explicitly call after completing disk operations,
blocking until all pending writes across all KVS workers are
persisted to disk.

C. Crawler Enhancements
1) URL Blacklisting: We implemented a pattern-based

blacklist using regex patterns in a HashSet to exclude archive
sites and low-quality domains, a challenge we noticed early
on with the Wayback Machine.

2) Restart Capability: We added a –restart flag that pre-
serves crawler state across runs by checking for existing KVS
tables and resuming from the previous frontier for a multi-
day crawl, allowing us to overcome the challenge of iterating
while making progress.

3) Domain Limiting and Politeness: We implemented per-
domain crawl limits tracked in pt-domains with configurable
maximums (default 1000 pages) to improve result diversity, a
challenge we noticed in our initial crawl of 5000 pages starting
from Wikipedia.

4) Advanced Language Detection: We implemented: URL
filtering for language codes, HTML/HTTP metadata inspec-
tion, and content-based detection using Language Detection
(see appendix). This approach reduced non-English pages by
approximately 70%.

5) Adaptive Frontier Sampling: Adaptive random sampling
limits URLs processed per round to bound the size of the
frontier, adjusting based on the size of frontier generated,
saving us from huge frontiers that were less interpretable and
caused OOMs early on.

D. Indexer Enhancements

1) Flame Ops: We used fromTableToPair, disk intermediate
tables, and destroying old tables.

2) TF/IDF Calculation Pipeline: We implemented IDF
calculation using foldByKey() to aggregate document frequen-
cies per word, followed by mapToPair() to compute IDF =
log(N/df) values. This two-stage pipeline leverages Flame’s
distributed aggregation to process word occurrences in parallel,
storing final IDF values to speed up query-time scoring.
We implemented TF calculation within the lambda for each
word/URL pair.

3) Word Filtering and Stemming: We implemented aggres-
sive word filtering using WordValidator to eliminate stop-
words, numbers, and invalid tokens before indexing. Com-
bined with Porter stemming via englishStemmer, this reduced
index size by approximately 40% while improving search
quality by conflating morphological variants, enabling better
query-document matching.

E. PageRank Enhancements

1) Flame Ops: We used fromTableToPair, disk intermediate
tables, and destroying old tables.

2) Join: We separated network requests in the scan into a
separate thread, and used multiget to speed up checks.

F. Frontend and Information Retrieval

1) Query Normalization: User queries are tokenized using
regex pattern matching for alphabetic tokens, filtered through
WordValidator to remove stopwords and invalid terms, and
stemmed using the Porter Stemmer. This ensures query terms
match indexed terms, enabling robust retrieval despite mor-
phological variations.



2) Parallel Inverted Index Lookup: For each normalized
query term, we hash the word and fetch its posting list from
pt-index-freqs in parallel using a thread pool of 6 workers.
Each posting list contains URL-frequency pairs in the for-
mat ”url1—freq1,url2—freq2,...”, representing pre-computed
TF scores from the Indexer. This parallel fetch minimizes
query latency by issuing concurrent KVS requests rather than
sequential lookups.

3) Candidate Pre-filtering: To avoid scoring millions of
documents, we pre-filter candidates by counting how many
query terms appear in each document. We select the top
500 URLs with the highest query term overlap, ensuring
we score only the most promising candidates. This reduces
computational cost by 99% on large corpuses while retaining
high-quality results, as documents matching few query terms
are unlikely to rank highly.

4) TF-IDF Scoring and Cosine Similarity: Vectors use the
pre-computed TF scores from pt-index-freqs multiplied by the
same IDF values.

5) Hybrid Ranking: Final scores combine cosine similarity
with normalized PageRank using the formula: finalScore =
0.8 * cosine + 0.2 * normalizedPR. PageRank values are
fetched from pt-pageranks and log-normalized to prevent high-
authority pages from dominating results. The 80-20 weighting
balances content relevance with link-based authority, ensuring
queries return pages that are both topically relevant and
trustworthy.

IV. RANKING

For ranking search results, we combine content-based rele-
vance derived from TF-IDF with link-based importance com-
puted via PageRank. For each document, a relevance score
is first computed using cosine similarity between the query
vector and the document vector in TF-IDF space. In parallel,
a PageRank score is retrieved from the precomputed PageRank
table. These signals are normalized and combined into a single
ranking score used to order the URLs returned by the frontend.

The final ranking score for a document d with respect to a
query q is defined as:

score(d, q) = 0.8 · cosine(d, q) + 0.2 · normalizedPR(d),

where

cosine(d, q) =
d⃗ · q⃗

∥d⃗∥ ∥q⃗∥
,

and
normalizedPR(d) =

log(PageRank(d) + 1)

log(6.5)
.

Here, d⃗ and q⃗ denote the TF-IDF vectors of the document
and query respectively, and the PageRank values are log-
normalized to reduce the impact of outliers, with 6.5 corre-
sponding to the maximum observed PageRank value plus one.

Term frequency within documents is computed using the
augmented TF formulation with a smoothing factor of 0.4,
which prevents overly frequent terms from dominating the
relevance score while still rewarding meaningful repetition.

V. EVALUATION

To deploy and test on AWS, we employed different vari-
ations of number of instances, instance type, and storage
capacity.
Final Attempt: With a simple change done to extracting
URLs, we reverted back to simpler instances, using c8a.large
for 6 Flame workers, and m8a.large for 6 KVS workers.
This time, with 1 worker initialized for each instance, our 12
workers in total with a max heap of 7.5GB for KVS and 3.5GB
for Flame have the following empirical statistics referenced in
Appendix III. Tables present in Appendix

VI. CHALLENGE LIST

One of the most difficult aspects of this project was scaling
PageRank to large corpora. Another major challenge was
debugging nondeterministic behavior in a concurrent system,
where race conditions, partial writes, and asynchronous flushes
caused unknown bugs. Finally, balancing performance op-
timization with system correctness proved difficult, as ag-
gressive optimizations often introduced subtle bugs that only
surfaced during large scale AWS deployments.

VII. 3 MOST DIFFICULT CHALLENGES

KVS writes were always a bottleneck, even till the end, so
it was tough redistributing work to the Flame workers and
managing high throughput ingestion. Another challenge was
optimizing Flame for a particular job without sacrificing per-
formance, correctness, or durability of other jobs. Lastly, while
we were quick to uncover underlying sources of slowdowns,
actually resolving the root cause was often difficult to reason
about in this distributed system.

VIII. LESSONS LEARNED

In hindsight, there are several practices we should have
adopted earlier in the project. We should have consistently
started experimentation, logging, and monitoring on smaller
corpora to verify the completeness and correctness of each
stage before scaling, rather than discovering issues during
large, time-consuming runs. We also should have been more
deliberate about balancing optimization efforts with actual
time spent executing jobs and ensuring that optimizations don’t
break other jobs, as premature optimization sometimes delayed
meaningful progress. Earlier and more frequent deployment
of each job script would have helped surface differences
between local execution and AWS behavior sooner, reducing
late-stage debugging. Additionally, we should have placed
greater emphasis on experimenting with different EC2 instance
configurations, particularly memory size and CPU core count,
and explicitly evaluated their performance-cost trade-offs.

IX. APPENDIX I: CHANGES MADE AFTER DEADLINE

As requested by Vincent Liu, we will be going into more
detail regarding our implementation. We made a change after
the code submission deadline after discovering a critical error
in our URL extraction logic which caused port numbers to be
dropped. We had originally changed this to experiment with



this as a potential speedup for PageRank since some domains
have multiple ports (e.g. 443 and 80) at which they can be
accessed, so we wanted to de-duplicate these for the PageRank
job. However, this logic was shared with the rest of the code
base. This resulted in the PageRank and Indexer job outputs to
have URL hashes that wouldn’t match with our existing crawl,
which led to incorrect results in our search engine server.
We pushed a fix in commit at December 12, 12:45 AM in
commit 3936b7558e1bf1c35d40649ea57cbe7c92d8b3eb that
restored our original URL extraction method to it’s original
functionality, tested using the homework test for PageRank
(our Indexer implementation diverged from the test since we
hash the URLs). Briefly, to explain the logic of the method, we
were looking for a quick solution and from our workings with
the project we already had a good understanding of utilities
like URLParser and shouldFilter, so we used this to greatly
reduce the amount of code that we needed in our logic. First,
we account for scheme URLs, then relative URLs, and finally
absolute URLs, filling in missing information with defaults
and filtering URLs with nonstandard protocols, file extensions,
ports, etc.

X. APPENDIX II: AUTOMATED TEST AND BUILD SCRIPTS

We created three main kinds of Bash scripts to assist us
in our project and support code changes. The first kind was
test scripts (test*.sh), which ensured that our implementa-
tion complied with the homework specifications, which was
helpful for maintaining a consistent interface for Flame and
the KVS throughout job implementation and changes. This
allowed us to work on these items in parallel while avoiding
some breaking changes. We also created a deployment script
(deploy.sh) which accepts files of KVS instance IPs and Flame
instance IPs and pushes compiled jars to each, running each in
a screen. We used AI to assist in the implementation of these
scripts, particularly the SSH syntax and options. The final
script (script.sh) runs a local deployment of 2 KVS workers
and 2 Flame workers, useful for benchmarking on our initial
corpus.

XI. APPENDIX III: EMPIRICAL RESULTS

TABLE I
CRAWLER PERFORMANCE ACROSS DIFFERENT CORPUS SIZES.

Corpus Size (URLs) Time (min) peak speed (pages/s)
5,000 < 1 57

200,000 65 51
1,280,000 220 46

TABLE II
INDEXER RUNTIME AS A FUNCTION OF CORPUS SIZE.

Corpus Size (URLs) Index Time (min)
5,000 2

200,000 25
1,280,000 90

TABLE III
AVERAGE PAGERANK COMPUTATION TIME.

Corpus Size (URLs) Avg. PageRank Time (min)
5,000 3.5

200,000 135
1,280,000 DNF

Note that only the rows with the corpus size of 200,000
represents our final model run, 5,000 and 1,280,000 correlates
with the second and third attempts respectively.

XII. REFERENCES

Snowball Word Stemmer: https://snowballstem.org/. Used
for stemming words in page content in indexing and for
similarly stemming words in queries to ensure consistent
matching with index.

Language Detection: https://github.com/shuyo/language-
detection. Used for filtering pages crawled for English pages,
avoiding accumulation of content from other languages.


