CIS 5300 Final Project Report: Fine-tuning Sentiment Analysis Models
with Data Augmentation

Michael Gao, Eric Lee, Andrew Park, David Zhan

Abstract

Sentiment Analysis has become a huge sub-
domain in the field of natural language pro-
cessing. It involves parsing text to determine
or quantify the sentiment or emotions of the
writer. This field is relevant to a variety of
fields, including but not limited to product re-
views, stock analysis, and general consumer
sentiment. Additionally, data augmentation has
earned its spot as a vital strategy for for en-
hancing the performance of sentiment analysis
models. This paper explores various augmen-
tation techniques, including synonym replace-
ment, back-translation, and random insertion,
to improve model generalization and robust-
ness. Our experiments demonstrate how these
techniques influence model performance. The
findings provide a comparative analysis of the
effectiveness of each method, revealing that
data augmentation can significantly boost sen-
timent classification accuracy. These insights
offer a practical framework for practitioners
seeking to optimize sentiment analysis models
in potentially low resource environments.

1 Introduction

1.1 The task at hand

The task that we are undertaking involves training
a baseline LSTM model on RateMyProfessor.com
reviews and comparing the performance of the
model both before and after the introduction of
data augmentation techniques such as synonym re-
placement, random deletion, and back translation.

1.2 Illustrative Example

To illustrate, consider a review such as "The pro-
fessor was very engaging and made the lectures
enjoyable." Applying synonym replacement, we
might alter "engaging" to "captivating," resulting
in "The professor was very captivating and made
the lectures enjoyable." This example highlights
how small augmentations can diversify the dataset

and expose the model to a broader set of linguistic
patterns.

1.3 Formal Definition of the Problem

Given a dataset D of text reviews from RateMyPro-
fessor.com X with associated sentiment labels Y,
where Y takes a between 1 and 5 (inclusive, with
0.5 point intervals), our goal is to train a model
f(X;0) that predicts Y from X. We define data
augmentation as a process A(X), where the funci-
ton A represents synonym replacement, random
deletion, or back traslation, that transforms X into
a new set X' to increase data variability. The ob-
jective is to evaluate the performance of the LSTM
model with and without the application of these
transformations.

1.4 Why We Selected This Task

This task was selected because sentiment analy-
sis is a fundamental problem in Natural Language
Processing with applications in customer feedback,
social media monitoring, and product reviews. By
focusing on data augmentation, we aim to address
the challenge of data scarcity, an increasingly com-
mon problem in machine learning. Enhancing the
robustness and generalization of sentiment mod-
els has practical relevance in both academia and
industry. Furthermore, RateMyProfessor.com pro-
vides a rich and diverse source of text data that
is representative of real-world sentiment analysis
applications.

2 Literature Review

2.1 Shared Task

The shared task relevant to this project involves
improving the performance of sentiment analy-
sis models through data augmentation techniques.
This challenge is common in NLP competitions and
research, where participants aim to create robust
models that generalize well to unseen data. The

introduction of synonym replacement, random dele-
tion, and back-translation as augmentation methods
aligns with established best practices for improving
model generalization.

One example of this shared task is discussed by
(author?) (1), who introduced a data augmentation
strategy for BERT in open-domain question answer-
ing. Their approach demonstrated that augment-
ing data with both positive and negative examples
significantly enhanced model performance. This
principle can be extended to sentiment analysis,
where varied examples help models learn diverse
linguistic patterns, thereby improving robustness.

2.2 Summary of Related Research

We have reviewed and analyzed several papers on
data augmentation in NLP. Following this, we sum-
marize our findings.

Yang et al. (2019) (author?) (1) presented a
novel approach to data augmentation for BERT
fine-tuning in open-domain question answering.
They utilized a stage-wise training process where
data from dissimilar sources was used initially, fol-
lowed by more task-relevant data. This strategy im-
proved generalization and demonstrated the value
of diverse data. While their focus was on question
answering, the general concept of multi-stage fine-
tuning and exposure to diverse examples can be
applied to sentiment analysis.

Lexical Substitution for Sentiment Analysis
(author?) (2) Another related method is Part-of-
Speech Focused Lexical Substitution (PLSDA),
which selectively replaces adjectives, nouns, and
verbs in sentiment-labeled texts to generate aug-
mented samples. By maintaining syntactic cor-
rectness and semantic consistency, this technique
ensures high-quality augmentations that enhance
model robustness. Compared to simpler synonym
replacement, PLSDA applies linguistic constraints
to ensure relevance and quality.

Comprehensive Survey on Data Augmentation
(author?) (3) conducted a comprehensive survey of
data augmentation techniques in NLP, categorizing
them into paraphrasing, noising, and sampling. For
sentiment analysis, paraphrasing techniques like
synonym replacement and back-translation were
found to be especially effective. They also high-
lighted the importance of balancing augmented
data to avoid overfitting, a key consideration in
our approach.

These studies collectively demonstrate that data
augmentation, when applied thoughtfully, can sig-
nificantly improve sentiment analysis models’ per-
formance. By leveraging concepts like stage-wise
training, lexical substitution, and balanced data
sampling, we aim to build a sentiment model that
generalizes well across unseen data.

3 Experimental Design

3.1 Data:

We used a dataset from HuggingFace composed
of comments from the popular feedback website
RateMyProfessor.com, consisting of 336,239 rows
of training data, 72,052 rows of development data,
and 72,051 rows of testing data.

We take a random subset of 50,000 rows of the
training data, since the original 336k is compu-
tationally expensive for data augmentation: even
augmenting 20% of our train sample (10k rows)
takes approximately 4 hours for synonym replace-
ment, and 10% of our train sample (5k rows) takes
8 hours for back translation. These procedures can-
not be optimized heavily with GPU via Google
Colab, and the aforementioned compute times in-
clude the usage of multiprocessing.

3.2 Evaluation Metric:

We evaluated the baselines and augmented models
based on 4 criteria: Mean Squared Error, Mean
Absolute Error, R-squared score, and Quadratic
Weighted Kappa Score.

* Mean Squared Error (MSE)is the average
squared error between the true labels and the
predicted labels. It is calculated as MSE =
LS (yi — 9:)?, where y; are true labels
and g; are predicted labels. A larger MSE
value implies larger average error over our
predictions.

This metric was chosen as the model loss func-
tion. The more ideal QWK (discussed later
in this section) is not differentiable and thus
cannot be used as a loss function, so MSE was
the best alternative.

* Mean Absolute Error (MAE): is the average
absolute distance difference between true la-
bels and predicted labels. It is calculated as
MAE = %2?21 |yi — ¥i|, where y; are true
labels and g; are predicted labels. A larger
MAE value implies larger average error over
our predictions.

* R-squared Score (R?): is the is the propor-
tion of the variation in the dependent vari-
able that is predictable from the independent
variable. R-squared score is calculated as
R =1-— %ﬂ%, where y; are true
labels, 9; are predicted labels, and ¥ is the
mean of the true labels. R? ranges from —oo

to 1, with 1 denoting a perfect fit with the data.

* Quadratic Weighted Kappa (QWK): QWK
measures the agreement between two raters
(in our case, the model and ground truth),
while also accounting for the magnitude of
disagreement. To calculate QWK, we must
create a confusion matrix O that counts the
number of occurrences for each class pair.
Then, we must create a weight matrix W
that penalizes disagreements based on the
squared difference. Finally, we must create
the expected matrix E which calculates the
expected agreement. Formally, it is calcu-
latedas x =1 — %, where w;; is the
weight between catégories v and j, 0;; is the
observed agreement, and e;; is the expected
agreement. x values lie on the interval [—1, 1],
where values close to —1 represent disagree-
ment (worse predictions than random), values
close to 0 represent random levels of agree-
ment, and values close to 1 represent perfect
agreement (ground truth).

As discussed earlier, this metric is not differ-
entiable: the summation dependency uses dis-
crete values, so a small change in one predic-
tion can cause a jump discontinuity in QWK.

3.3 Simple Baseline

For our simple baseline, we implemented a ma-
jority class baseline. This baseline takes the most
common class in the training set (in this case, it
was a rating of 5.0), and uses it as a prediction for
all inputs of the validation and test set.

With this baseline, we achieved the following
results.

Train Metrics Val Metrics Test Metrics
Mean Absolute Error 1.233 1.227 1.229
Mean Squared Error 3.988 3.967 3.966

R2 Score -0.615 -0.611 -0.615

Quadratic Weighted Kappa 0.000 0.000 0.000

3.4 Strong Baseline

We decided to use a Long Short Term Model
(LSTM) regressor for our strong baseline model.
An LSTM model is a type of Recurrent Neural Net-
work that use memory cells and gates (forget, input,
output) to control the flow of information and mem-
ory of the model. While LSTMs are primarily used
for classification tasks, LSTM regressors are used
to predict continuous values, which we then round
to the nearest 0.5 step for analysis.

With an LSTM regressor, we have the following
results.

Train Metrics Val Metrics Test Metrics
Mean Absolute Error 0.718 0.859 0.860
Mean Squared Error 0.973 1.400

R2 Score 0.606 0.432

Quadratic Weighted Kappa 0.748 0.633

4 Experimental Results

This section should contain:

* Published Baseline: For the published base-
line, we implemented an initial version of the
data augmentation portion of our project. The
technique we decided to implement was Syn-
onym replacement. This data augmentation
technique involves taking an input text and
replacing a number of the words in the text
with synonyms, thus generating a new train-
ing row. This allows us to artificially generate
more data that retains a similar meaning to
the original text, meaning the model will be
trained over a more diverse training set, and
thus would help the model output more accu-
rate predictions.

Using NLTK’s .synsets() function, we gen-
erated synonyms for 3 random words within
each sentence. Unfortunately, .synsets() had
unpredictable behaviour regarding synonyms
for shorter words (for example "lodine" as
a synonym for "["), so we decided to set a
threshold to only use words of length 3 or
more as candidates for synonym replacement.

Additionally, we undersampled our data to
20% due to the fact that the LSTM was taking
extraordinarily long to run. Thus, since we
only augmented 20% of the data, our dataset
was 1.2 times the size of our original.

We achieved the following results:

Train Metrics Val Metrics Test Metrics
Mean Absolute Error 0.715 0.880 0.884
Mean Squared Error 0.928 1.431

R2 Score 0.624 0.419

Quadratic Weighted Kappa 0.762 0.628

The results after data augmentation only
marginally improved compared to the strong
baseline. This could be due to the fact that
.synsets() may not produce the best synonyms
or that we potentially did not augment enough
of the dataset to see a meaningful difference.

Extensions: We implemented more tech-
niques as extensions to see if they improved
our model performance.

Random Deletion As a first extension, we
implemented random deletion. This is the pro-
cess of randomly deleting random words at
random from a sentence so the model can gen-
eralize on shorter sentences with less context.
We used a random threshold of 0.3 when con-
sidering each word in the sentence, meaning
each word had a 30% chance of being deleted.

Using random deletion, we augmented 20%
of our dataset. So in total, our dataset was 1.4
times the size of the original (20% random
deletion, 20% synonym replacement)

We achieved the following results:

Train Metrics Val Metrics Test Metrics
Mean Absolute Error 0.666 0.839 0.837
Mean Squared Error 0.924 1.448 1.451

R2 Score 0.626 0.412 0.409

Quadratic Weighted Kappa 0.771 0.636 0.636

We see that error has generally decreased and
we have marginally better QWK scores com-
pared to the strong baseline. But no change is
significant.

Back-Translation As a second extension, we
implemented back-translation. This is the pro-
cess of translating a sentence to another lan-
guage, and then translating it back to English.
Through the translation, certain words will be
replaced due to differences in language struc-
ture and semantics, which then we will be
left with a new piece of augmented data. Us-
ing teh OPUS-MT models from the Helsinki-
NLP group, we translated our data from En-
glish to French and vice versa. Unfortunately,
back-translation was also taking extraordinar-
ily long compared (7 seconds per row of data).
Thus, we decided to only augment 5% of the

data with this approach, leaving us with a
dataset about 1.45 times the original size (5%
Back-translation, 20% random deletion, 20%
synonym replacement).

We achieved the following results:

Train Metrics Val Metrics Test Metrics

Mean Absolute Error 0.708 0.869 0.866
Mean Squared Error 0.944 1.438 1.434

R2 Score 0.618 0.416 0.416

Quadratic Weighted Kappa 0.753 0.620 0.622

From the data, it seems that there is very neg-
ligible variation from the previous extension.
In fact, the results across all categories are
marginally worse than the original strong
baseline LSTM model. Again, this may
be attributed to the translation model not
performing as intended, or the fact that we
simply were not able to augment a significant
enough portion of the dataset to make a
non-negligible impact on the test metrics.

5 Error Analysis

With our data predictions, we achieve
the following confusion matrix.

Confusion Matrix

S- 466 2215 2483 1912 1614 1514 1108 907 442

17500

15000

- 12500

2.5
°
°
°
°

- 24 205 431 524 675 845 999 1009 826 - 10000

Actual
3.0

35
°
°
°
°
°
°
°
°

- 7500

- 13 85 226 355 602 912 1404 2279 3408

4.0

-2500

2- 2 146 481 876 1267 2342 3547 7026
' ' ' ' ' | 0 -0

10 15 2.0 25 3.0 35 4.0 45 5.0
Predicted

The confusion matrix reveals several key
insights into the performance of our model.
Firstly, there is strong diagonal dominance
for the majority class (5.0), indicating that
the model predicts this rating accurately
when it is the true label. However, significant
misclassifications are observed, particularly
between neighboring classes. For instance,
actual ratings of 4.0 are frequently misclas-
sified as 4.5 or 5.0, and actual 3.0 ratings
are often predicted as 3.5 or 4.0. This
trend suggests that the model struggles with

fine-grained distinctions between adjacent
classes. Additionally, there is a noticeable
bias toward predicting 5.0 across multiple
actual ratings, which points to an imbalance
in the dataset favoring higher ratings. Sparse
predictions for rare classes such as 1.5 and
4.5 further highlight the model’s difficulty
in handling low-frequency labels, likely
due to insufficient training data for these
classes. To address these issues in the
future, we would probably apply techniques
such as class balancing, oversampling for
minority classes, and incorporating class-
weighted loss functions. Moreover, using
more robust data augmentation methods
and exploring advanced models such as
transformer-based architectures may help
mitigate these misclassifications and improve
overall performance.

6 Conclusions

In this project, we explored the impact of various
data augmentation techniques on improving the
performance of sentiment analysis models trained
on RateMyProfessor.com reviews. Using a base-
line LSTM regressor model, we investigated how
synonym replacement, random deletion, and back-
translation influenced the model’s generalization
and robustness.

The results showed that while data augmen-
tation techniques provided incremental improve-
ments over the simple baseline, the gains were not
as significant as expected. Synonym replacement
yielded only marginal improvements, likely due
to the limitations of the synonym generation algo-
rithm and the relatively small proportion of data
augmented. Random deletion further enhanced
the performance slightly by exposing the model
to less context, promoting generalization. Back-
translation, while theoretically the most effective,
faced practical challenges due to computational
inefficiency and low coverage of the dataset.

The final augmented dataset (1.45x the original
size) showed minor improvements in Mean Abso-
lute Error and Quadratic Weighted Kappa scores
compared to the baseline. However, these improve-
ments were not substantial enough to outperform
the original strong baseline by a large margin. This
suggests that either the amount of augmented data
was insufficient or the augmentation methods used
did not fully align with the data’s characteristics.

Despite these limitations, our findings highlight
the potential of data augmentation in low-resource
NLP tasks and its ability to enhance model robust-
ness. Future work could focus on optimizing aug-
mentation methods, leveraging more sophisticated
synonym generation techniques, and applying aug-
mentation on a larger proportion of the data. Ad-
ditionally, experimenting with transformer-based
architectures like BERT or fine-tuning pre-trained
models may yield better results for sentiment anal-
ysis tasks. Overall, this project provides a practical
framework for integrating data augmentation into
NLP pipelines and underscores its importance in
improving model performance in real-world appli-
cations.

Thanks for reading!

Acknowledgements

We would like to thank Upasana Dutta for all her
help and guidance during the project process.

7 Bibilography

References

[1] Wei Yang, Yuqing Xie, Aileen Lin, Xingyu
Li, Jimmy Lin, and Xiangyang Sun (2019).
Data Augmentation for BERT Fine-Tuning in
Open-Domain Question Answering. arXiv preprint
arXiv:1904.06652. Available at: https://arxiv.
org/abs/1904.06652.

[2] Rong Xiang, Emmanuele Chersoni, Qin Lu,
Chu-Ren Huang, Wenjie Li, and Yunfei Long
(2021). Part-of-Speech Focused Lexical Substitu-
tion for Data Augmentation in Sentiment Anal-
ysis. Journal of the Association for Informa-
tion Science and Technology (JASIST). Avail-
able at: https://asistdl.onlinelibrary.wiley.
com/doi/full/10.1002/asi.24493.

[3] Bohan Li and others (2022). Data Augmentation Ap-
proaches in Natural Language Processing: A Survey.
AI Open, Vol. 3, pp. 27-41. Available at: https:
//doi.org/10.1016/j.aiopen.2022.03.001.

A Appendices

https://arxiv.org/abs/1904.06652
https://arxiv.org/abs/1904.06652
https://arxiv.org/abs/1904.06652
https://asistdl.onlinelibrary.wiley.com/doi/full/10.1002/asi.24493
https://asistdl.onlinelibrary.wiley.com/doi/full/10.1002/asi.24493
https://asistdl.onlinelibrary.wiley.com/doi/full/10.1002/asi.24493
https://doi.org/10.1016/j.aiopen.2022.03.001
https://doi.org/10.1016/j.aiopen.2022.03.001
https://doi.org/10.1016/j.aiopen.2022.03.001

