A REIMPLEMENTATION OF SWIFTEDIT FOR ONE-STEP TEXT-GUIDED IMAGE EDITING

ANDREW CHANG [ANDREWO08@SEAS], MATTHEW KUO [MKUO@SEAS], MEGAN YANG [MEGYANG@SEAS], DAVID
ZHAN[DAZHAN@SEAS],

ABSTRACT. We present a reimplementation and empirical analysis of SwiftEdit, a state-of-the-art one-step text-guided
image editing framework based on distilled diffusion models. Our work reproduces the full SwiftEdit inference pipeline,
including one-step inversion, self-guided mask extraction, and mask-aware attention rescaling, and evaluates its behavior on
the PIE-Bench dataset. We further introduce two training-free modifications: an edge-aware refinement to reduce boundary
spill in editing masks and an adaptive attention rescaling heuristic based on mask confidence and uncertainty. Quantitative
results show that while naive alternative mask extraction strategies degrade background preservation and edit localization,
our refinements significantly reduce boundary artifacts and unintended background changes. However, these improvements
come with a trade-off in edited-region semantic alignment, highlighting a fundamental tension between localization accuracy
and edit strength. Overall, our findings emphasize the critical role of reliable mask estimation in enabling effective one-step
text-guided image editing.

1. INTRODUCTION

Text guided image editing enables users to modify images to natural language instructions, leveraging the priors
learned by large-scale text-to-image diffusion models. However, most existing implementations use computationally
expensive multi-step diffusion processes requiring 50+ denoising steps, which is prohibitive for interactive applications
requiring real-time feedback

Recent developments have demonstrated that high-quality images can be generated in a single forward pass through
knowledge distillation from multi-step teacher models (e.g., SwiftBrushV?2). This raises the question: can one-step
diffusion models enable similarly fast text-guided image editing?

The goal of this project is to present a re-implementation, evaluation, and modifications to SwiftEdit, which is a state
of the art text-guided image editor. At its core, SwiftEdit speeds up existing methods by doing inversion and editing in a
single step each, which yields a remarkable inference time of 0.23 seconds.

1.1. Contributions.

e Reimplementation: We reproduced the full SwiftEdit inference pipeline (one-step inversion, self-guided mask
extraction, and mask-aware ARaM generation) from the official repository.

o Mask refinement without retraining: We implemented an edge-aware refinement to the self-guided mask to
reduce boundary spill and unintended background drift.

o Adaptive ARaM scaling: We introduced a training-free heuristic that adapts foreground/background ARaM
scales from a distribution-based confidence score and mask uncertainty (entropy), improving robustness when
masks are ambiguous.

o Empirical findings: On PieBench samples, our full modifications slightly improved PSNR/MSE and strongly
reduced edge-focused artifact ratios and spill, but sometimes reduced edited-region CLIP alignment, revealing
a consistent localization vs. edit-strength trade-off.

2. BACKGROUND

2.1. Diffusion-Based Text-to-Image Models. Modern text-to-image generation systems are commonly built on
diffusion models, which synthesize images by iteratively denoising a latent variable conditioned on a text prompt. Given
an input noise sample and a text embedding, a diffusion model predicts the noise component at each step and gradually
refines the latent into an image representation. While this process produces high-quality results, it typically requires
tens of denoising steps, resulting in high inference latency.

1

2 ANDREW CHANG [ANDREWO08 @SEAS], MATTHEW KUO [MKUO@SEAS], MEGAN YANG [MEGYANG@SEAS], DAVID ZHAN[DAZHAN @SEAS],

2.2. One-Step Diffusion and Distillation. Recent work has shown that diffusion models can be accelerated through
distillation, enabling high-quality image generation in a single forward pass. One-step diffusion models train a student
generator to directly map noise and text embeddings to an image latent, amortizing the iterative denoising process into a
single network evaluation. SwiftEdit builds on this idea by adopting SwiftBrushV2, a one-step text-to-image diffusion
model, as its generative backbone.

2.3. Image-Prompt Adapter. To preserve source image content during editing, SwiftEdit incorporates the Image-
Prompt Adapter (IP-Adapter), which injects image features into the diffusion model through a decoupled cross-attention
mechanism. This design allows the model to balance text-guided edits with visual fidelity to the source image by
separately controlling text and image conditioning strengths. IP-Adapter plays a central role in SwiftEdit by enabling
identity preservation and background consistency during one-step image editing.

3. RELATED WORK

Text-guided image editing methods typically map images to noisy latents via inversion, then denoise under a new
prompt [7]. Localization remains challenging: attention-control methods [5] guide edits spatially, while IP-Adapter-style
approaches [6] inject image features to preserve identity. These methods are flexible but slow, requiring many denoising
steps. SwiftEdit [1] addresses latency by combining one-step inversion with a one-step generator (SwiftBrushV2 [2,3]),
achieving end-to-end editing in two forward passes. Its ARaM mechanism uses mask-guided attention rescaling to
localize edits. However, mask errors propagate into boundary artifacts and background drift. We evaluate on PIE-Bench
[4], which provides paired prompts and ground-truth masks, and introduce training-free refinements targeting these
failure modes.

4. APPROACH

4.1. Overview. SwiftEdit performs one-step inversion (4.2), extracts a self-guided mask (4.3), and generates edited
images via mask-aware attention rescaling (4.4). Our implementation follows this architecture.

4.2. One-Step Inversion Network. The inversion network Fj shares the same UNet architecture as the SwiftBrushv2
generator and is initialized with its weights. Given an image latent z and text embedding c,, it predicts the inverted
noise é = Fy(z, ¢,) that would reconstruct z when passed through the generator. A key design choice is pairing the
inversion network with the IP-Adapter-enhanced generator GIP (Section 2.3) during training, so the image-conditioning
branch reduces the burden on the inverted noise to encode fine-grained visual details.

4.3. Self-Guided Mask Extraction. To identify editing regions without user input, SwiftEdit exploits the inversion
network’s sensitivity to prompt changes. The mask is computed by inverting the source image with both the source and
edit prompts at an intermediate timestep (default ¢ = 500), then measuring the difference: M = normalize(|¢5°“"<¢ —
é°dit|). Specifically, the difference is averaged across channels, clamped to [0, 1« -] where p is the mean and r is
a clamping rate (default 3.0), normalized, and binarized with threshold 0.5. The implementation in editing_utils.py
follows this procedure directly.

4.4. Attention Rescaling for Mask-Aware Editing (ARaM). During generation with G'?, standard decoupled
cross-attention applies a global image condition scale s, uniformly across the image. ARaM modifies this to use
region-specific scales guided by the editing mask M. The attention output becomes:

hl =Sy M - Attl’l(Ql, Kya Vy) + Seait - M - Attl’l(Ql,Kw, V.L) + Snon—edit (1 - M) : Attn(Qh ny Vl) ()

where s, controls text-image alignment strength in the editing region, s.4;; controls image conditioning in the foreground
(editing region), and Sy, oy —edi¢ controls image conditioning in the background. By setting S¢q;: = 0 and Spon—cdit = 1,
the edited region relies purely on the text prompt while the background preserves source image fidelity through
strong image conditioning. The parameter s, (default 2.0) provides additional control over editing strength. The
implementation in mask_controller.py and mask_attention_processor.py realizes this mechanism through specialized
attention processors that compute separate attention maps for foreground and background regions, then blend them
according to the mask.

A REIMPLEMENTATION OF SWIFTEDIT FOR ONE-STEP TEXT-GUIDED IMAGE EDITING 3

4.5. Modification 1: Cross-Attention-Based Editing Mask Extraction. Note: This attention-based mask extraction
was explored conceptually and implemented on top of our SwiftEdit reimplementation, but was not included in the
PIE-Bench quantitative evaluation. All reported quantitative results evaluate only the training-free mask refinement and
adaptive ARaM scaling described below.

SwiftEdit’s core mechanism relies on self-guided masks derived from differences in noise predictions under the
source and edit prompts. As an alternative, we propose an attention-based mask extraction strategy that leverages
the generator’s text cross-attention patterns. Because cross-attention explicitly encodes spatial-textual alignment,
differences in attention between the source and edit prompts can provide a semantically grounded estimate of the
intended edit region.

Concretely, during the one-step forward pass, we record cross-attention maps from the generator under both the
source and edit prompts, denoted as A%°“"¢ and A°%", using the same noisy latent z. We extract attention only from the
mid and up blocks, which offer higher semantic and spatial resolution, based on qualitative validation. The resulting
attention differences are then aggregated to produce an editing mask.

Next, we want to find the absolute difference between the attention maps for each layer using the following equation:

AE _ |Azource o Azdit|)

We then average across heads and text tokens to obtain a spatial importance map:

Hy, T
d[(l) = ﬁ Ag(h,l,t)7 S {1, .. .,N[}.

h=1t=1

Each dy is reshaped to its spatial grid, resized to a common resolution, and combined across layers using increasing

weights for later layers:
(i) =Y wede(i), > we=1
¢ ¢

Finally, following the SwiftEdit paper, we clamp and normalize the aggregated map using the follow equation:
clip(d, 0, p-7)
wer

d= , p=E[d], r=3.0,

and threshold to obtain a binary editing mask:

Maein (i) = T[d(3) > 0.5].
The resulting mask is resized to the latent resolution and passed into ARaM, replacing the original self-guided mask
when enabled.
We have the following results.

Method PSNRgc © MSEpg | CLIP-W 71 CLIP-E1 Time (s) |
SwiftEdit (Baseline) 23.33 6.60 25.16 21.25 0.23
Noise-Based (our impl) 17.68 19.26 76.70 91.10 0.22
Attention-Based (mod 1) 17.58 19.48 76.42 98.39 0.23

TABLE 1. Average performance on PIE-Bench comparing SwiftEdit baseline with noise-based and
attention-based mask extraction methods. Noise and attention results are averaged over 140 samples
per method.

4.6. Interpretation of results. Compared to the SwiftEdit baseline, both the noise-based and attention-based mask
variants exhibit noticeably lower background fidelity, as reflected by reduced PSNRpg and higher MSEgg. This
indicates that the inferred masks are less precise, causing a larger portion of the background to be unintentionally
modified during editing. At the same time, both variants achieve substantially higher CLIP-W and CLIP-E scores,
suggesting that the edited images remain globally and locally more similar to the source image. This behavior implies
that the edits are more conservative and less localized: imprecise masks dilute the intended edit by spreading changes
across the image while preserving much of the original content, leading to higher semantic similarity but weaker
targeted modifications. Overall, these results highlight the importance of accurate mask estimation in SwiftEdit-style
pipelines, as mask errors directly trade off edit strength for background preservation and semantic consistency.

4 ANDREW CHANG [ANDREW08@SEAS], MATTHEW KUO [MKUO@SEAS], MEGAN YANG [MEGYANG@SEAS], DAVID ZHAN[DAZHAN @SEAS],

FIGURE 1. Example SwiftEdit baseline edit (“make the cake square”).

4.7. Modification 2: Edge-Aware Mask Refinement (Boundary Spill Reduction). SwiftEdit’s self-guided mask can
exhibit boundary spill, where uncertain edge regions allow unintended background edits. We implement a training-free
refinement that down-weights mask values at boundaries when the difference signal § (channel-averaged |¢57¢ — édit|)
exhibits strong edges.

We compute a boundary band b = dilate(M) — erode(M) and an edge-strength map e via Laplacian operator on d,
normalized to [0, 1]. The mask is linearly attenuated at boundaries:

M (i) = M (i) (1 - Be(i) b(d)),

where (3 controls edge suppression strength. We then blend with the original mask:

M'(i) = a M (i) + (1 — a) M(i),

using preservation coefficient a. This targets Edge-Ratio and Spill improvements, with potential trade-offs in CLIP-E
if the mask becomes more conservative.

4.8. Modification 3: Adaptive ARaM Scaling via Confidence + Mask Uncertainty. SwiftEdit’s ARaM uses fixed
scaling factors for foreground/background regions, which can be suboptimal when masks are noisy or uncertain. We
implement a training-free adaptive scaling heuristic that adjusts ARaM scales based on two inference-time signals: (i)
distribution confidence cg;s; (how separable the difference distribution is) and (ii) mask uncertainty w,,<x (Bernoulli
entropy of the soft mask).

We normalize cgist to [0, 1] via Caist = clip(caist/co, 0, 1) where ¢g = 2.0, and compute mask entropy:

s = i 37 (=M@Y log M(D) = (1= M) log(1 = M(3)),

normalized by log 2 to obtain @iyask € [0, 1]. Combined confidence is:
Ceomb = 0.6 Caist + 0.4 (1 — Umask)-

We map ccomp to ARaM scales via a monotone rule: lower confidence produces more conservative edits (higher
background preservation, lower foreground modification), while higher confidence enables stronger edits. This targets
Spill and BG-Change improvements, with potential trade-offs in CLIP-E due to the localization vs. edit-strength
trade-off.

5. EXPERIMENTAL RESULTS

5.1. Models and Architecture. We use the released SwiftEdit checkpoints from the official repository: the one-step
inversion network Fjp, the SwiftBrushV2 one-step generator GG, and the IP-Adapter conditioning branch. We do
not retrain any model weights. Instead, we evaluate inference-only changes that modify (i) post-processing of the
self-guided mask and (ii) run-time selection of ARaM scaling parameters. All results are reported relative to the
unmodified SwiftEdit baseline under identical pretrained weights.

A REIMPLEMENTATION OF SWIFTEDIT FOR ONE-STEP TEXT-GUIDED IMAGE EDITING 5

Config PSNR? MSE| CLIP-W{ CLIP-Et
Baseline 552 183179248.05 23.53 23.78
Edge Only 556 181729664.71 23.44 21.01
Scales Only 551 183736057.94 23.46 20.17

All Improvements ~ 5.55 181860582.68 23.59 21.02

TABLE 2. Average PIE-Bench results using paper-style metrics.

Config Mask-Qt Edge-Blur| Edge-Prest Edge-Ratio] Spilll BG-Change]
Baseline 0.272 0.0590 0.534 0.0364 0.841 0.2240
Edge Only 0.274 0.0609 0.528 0.0060 0.778 0.2225
Scales Only 0.274 0.0617 0.528 0.0061 0.783 0.2242
All Improvements 0.274 0.0609 0.527 0.0060 0.779 0.2226

TABLE 3. Average PIE-Bench results using custom locality/boundary metrics.

5.2. Dataset, Evaluation Protocol, and Metrics. We evaluate our methods on PIE-Bench (HuggingFace), which
provides paired source images and prompts, target prompts, and evaluation metadata including reference masks. For
each sample, we evaluate four configurations under identical hyperparameters: Baseline, Edge Only (edge-aware mask
refinement), Scales Only (adaptive ARaM scaling), and All Improvements (both). All images are resized to 512 x 512
to match the pretrained VAE/UNet setup, following SwiftEdit preprocessing: normalization to [—1, 1], VAE encoding,
latent-space editing, and decoding back to pixel space.

We report two classes of metrics. First, we use paper-style metrics from SwiftEdit: PSNR and MSE to measure
background preservation, and CLIP similarity to assess semantic alignment for the whole image (CLIP-W) and edited
regions (CLIP-E). Second, we introduce locality-focused diagnostics to explicitly measure our target failure modes,
including Edge-Ratio, Edge-Blur, and Edge-Pres for boundary behavior, as well as Spill and BG-Change to quantify
unintended background modification.

5.3. Interpretation of Results. Overall, our modifications primarily improve localization robustness rather than
producing visually dramatic changes. The clearest gain is a large reduction in boundary-focused artifacts: Edge-Ratio
drops by ~6.1x (0.0364 — 0.0060), and Spill decreases (0.841 — 0.779), indicating less unintended background
change. PSNR/MSE improve slightly, consistent with modestly better preservation.

The main downside is reduced edited-region alignment: CLIP-E decreases for all modified variants, suggesting a
localization vs. edit-strength trade-off. In practice, the improved variants often look similar to baseline when baseline
already localizes well; the benefit shows up most on harder cases as cleaner boundaries and reduced drift.

6. DISCUSSION

Our results show that SwiftEdit’s performance is highly sensitive to the quality of the inferred editing mask. While
alternative mask extraction strategies based on noise differences and cross-attention patterns are conceptually appealing,
their imprecision leads to a clear degradation in background preservation, as evidenced by lower PSNRpg and higher
MSEgg. At the same time, these variants exhibit higher CLIP-W and CLIP-E scores, indicating that edits remain
semantically closer to the source image but are weaker and less localized. This highlights a fundamental trade-off in
SwiftEdit-style pipelines: inaccurate masks tend to dilute the intended edit by spreading changes across the image,
preserving global semantics at the cost of edit strength and localization.

Our training-free refinements—edge-aware mask attenuation and adaptive ARaM scaling—partially mitigate these
issues by reducing boundary spill and unintended background drift without modifying model weights. However, the
accompanying drop in edited-region CLIP alignment suggests that improving localization often comes at the expense of
edit intensity. Overall, these findings underscore the central role of reliable mask estimation in one-step text-guided
image editing and suggest that future improvements may require either stronger mask supervision or lightweight
fine-tuning to better balance localization and semantic alignment.

6 ANDREW CHANG [ANDREWO08@SEAS], MATTHEW KUO [MKUO@SEAS], MEGAN YANG [MEGYANG@SEAS], DAVID ZHAN[DAZHAN @SEAS],

REFERENCES

[1] D. T. Nguyen, M. Vilela, D. H. Tran, A. Tavakoli, and B. Schneemann. SwiftEdit: Lightning-Fast Text-Guided Im-
age Editing via One-Step Diffusion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2025. https://openaccess.thecvf.com/content/CVPR2025/papers/Nguyen_SwiftEdit_Lightning_|
Fast_Text-Guided_Image_Editing via_One-Step_Diffusion_CVPR_2025_paper.pdf

[2] D. T. Nguyen, M. Vilela, D. H. Tran, A. Tavakoli, and B. Schneemann. SwiftBrush v2: One-Step Text-to-Image Diffusion Model with
Variational Score Distillation. arXiv preprint arXiv:2503.04726, 2025.

[3]1 Y. Qian, D. Li, B. Ghanem, and M. Elhoseiny. SwiftBrush: One-Step Text-to-Image Diffusion Model with Variational Score Distillation. arXiv
preprint arXiv:2501.09016, 2025.

[4] X. Ju, A. Zeng, Y. Bian, S. Liu, and Q. Xu. Direct Inversion: Boosting Diffusion-based Editing with 3 Lines of Code. arXiv preprint
arXiv:2310.01506, 2023. (Introduces PIE-Bench.)

[5] A. Hertz, R. Mokady, J. Tenenbaum, K. Aberman, Y. Pritch, and D. Cohen-Or. Prompt-to-Prompt Image Editing with Cross Attention Control.
arXiv preprint arXiv:2208.01626, 2022.

[6] H. Ye, J. Huang, S. Liu, and others. IP-Adapter: Text Compatible Image Prompt Adapter for Text-to-Image Diffusion Models. arXiv preprint
arXiv:2308.06721, 2023.

[7] T. Brooks, A. Holynski, and A. A. Efros. InstructPix2Pix: Learning to Follow Image Editing Instructions. arXiv preprint arXiv:2211.09800,
2022.

[8] N. Tumanyan, A. Voynov, S. Bagon, and T. Dekel. PnP Inversion: Boosting Diffusion-Based Edit Models with Prompt-to-Prompt Guidance. In
International Conference on Learning Representations (ICLR), 2024.

https://openaccess.thecvf.com/content/CVPR2025/papers/Nguyen_SwiftEdit_Lightning_Fast_Text-Guided_Image_Editing_via_One-Step_Diffusion_CVPR_2025_paper.pdf
https://openaccess.thecvf.com/content/CVPR2025/papers/Nguyen_SwiftEdit_Lightning_Fast_Text-Guided_Image_Editing_via_One-Step_Diffusion_CVPR_2025_paper.pdf

	1. Introduction
	1.1. Contributions

	2. Background
	2.1. Diffusion-Based Text-to-Image Models
	2.2. One-Step Diffusion and Distillation
	2.3. Image-Prompt Adapter

	3. Related Work
	4. Approach
	4.1. Overview
	4.2. One-Step Inversion Network.
	4.3. Self-Guided Mask Extraction.
	4.4. Attention Rescaling for Mask-Aware Editing (ARaM)
	4.5. Modification 1: Cross-Attention-Based Editing Mask Extraction
	4.6. Interpretation of results
	4.7. Modification 2: Edge-Aware Mask Refinement (Boundary Spill Reduction)
	4.8. Modification 3: Adaptive ARaM Scaling via Confidence + Mask Uncertainty

	5. Experimental Results
	5.1. Models and Architecture
	5.2. Dataset, Evaluation Protocol, and Metrics
	5.3. Interpretation of Results

	6. Discussion
	References

